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Abstract. We analyse the non-universal conductance fluctuations for a dirty quantum wire
in a transport regime where both mesoscopic and ballistic transport characteristics play a role.
This ‘mixed’ transport regime is reached when impurities are distributed near the walls of a
quantum wire, leaving the centre region ballistic. Using a diagrammatic technique, we find that
the existence of a ballistic region destroys the conventional universal conductance fluctuations.
The crossover behaviour of the fluctuation amplitude from the usual quasi-1D situation to that
of the mixed regime is clearly revealed, and the role of various length scales identified. Our
analytical predictions are confirmed by a direct numerical evaluation of the Landauer–Büttiker
formula.

1. Introduction

In recent years semiconductor nanostructures have provided opportunities for investigating
electrical conduction on very short length scales. In addition, a complete understanding
of electronic transport in these submicron and ultra-submicron systems is indispensable
for device applications. Among the many discoveries [1], one of the most interesting
is the existence ofuniversal conductance fluctuations (UCF) in the mesoscopic transport
regime [2, 3]. In this case the conductance of a sample has a characteristic fluctuation
amplitude which is independent of the details of the elastic scattering centres, of the value
of the Fermi energy or of the strength of an external magnetic field. Due to an assumption of
ergodicity [2], such a fluctuation amplitude also describes the sample-to-sample fluctuation
which is usually more amenable to theoretical analysis. The mesoscopic transport regime is
characterized by several important length scales: the elastic mean free pathl, the electron
phase coherence lengthξ , and the sample sizeL; this regime is reached whenl < L� ξ .
On the other hand, when the sample is extremely small such thatL < l � ξ , there is
effectively no impurity scattering and conduction is only limited by the sample shape and
by the boundary scattering. This is the so-called ballistic transport regime [1].

The mesoscopic transport regime has been observed in metallic samples where there
are many elastic scattering centres such as impurities and imperfections of the crystalline
structure. These scattering centres are distributed randomly anduniformly throughout the
sample. Correspondingly, the diagrammatic technique has successfully been applied to the
calculation of conductance fluctuations in this situation [2, 3]. On the other hand, many
situations of potential interest for device applications have both mesoscopic and ballistic
ingredients. For instance, it is known that the electron mobility in a MOSFET is substantially
influenced by the quality of the Si–SiO2 interface [4, 5, 6, 7], and parameters characterizing
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scattering at the rough interface can be extracted from experimental data [8]. Similarly,
for a quantum MESFET [9] the roughness at the metal–semiconductor interface provides
the ‘impurity scattering’. Equally, as free-standing quantum wires become a reality, one
must deal with the impurity scattering problem near the boundaries, as impurities tend to
diffuse into the wire in this region. It is also known that scattering at irregular interfaces
of a short-period superlattice and impurity scattering in a double-barrier quantum well
have an important influence on quantum tunnellingI–V characteristics [10, 11], and recent
experiments have demonstrated that in quantum wires without impurities, the scattering
from the wire boundary roughness gives rise to a large positive magneto-resistance [12].
This positive magneto-resistance is similar to that observed in metallic thin films for which a
classical explanation is possible [13]. In addition, for systems where two separate disordered
reservoirs are connected by a purely ballistic region, Maslov, Barnes and Kirczenow have
shown that the conductance fluctuations can be suppressed by the presence of the ballistic
cavity [14].

In all of the above situations the devices possess regions where impurity scattering is
important, and regions where very little impurity scattering is present. From a theoretical
point of view these are difficult problems because one has to deal with a spatially non-
uniform system. Furthermore, many conceptual difficulties arise concerning this ‘mixed’
regime of quantum transport, such as the destruction of UCF by the ballistic channels, the
competition of localization effects and ballistic effects, the contributions of subbands in the
presence of impurity scattering, and more importantly the role played by various length
scales. So far, theoretical studies of this ‘mixed’ transport regime have focused on the
important problem of a narrow quantum wire [12] with rough boundaries [15, 16, 17, 18],
and investigations of conductance fluctuations in these systems have been limited to
numerical calculations. While useful intuition has been obtained, it is nevertheless difficult
to draw general conclusions from purely numerical investigations since accurate values of
the conductance fluctuations as a function of system parameters are difficult to obtain. The
purpose of this paper is to provide a theoretical analysis of this ‘mixed’ regime, giving more
details than in our previous letter [19] as well as some additional results.

In particular, we have extended the diagrammatic technique [2] to deal with a dirty wire
where the impurities are distributednon-uniformlyand located near the wire boundaries,
leaving the centre region of the wire free of impurities, and thus ballistic. This leads to
several new features of the analysis as compared with the conventional UCF theory. We
note the appearance of a new set of diagrams describing the correlated scattering across
the ballistic region of the sample, the new mathematical character of the diffusion operator,
and the extension of the notion of the range of the energy correlation. We will describe
these formal developments in detail. After making several physically and mathematically
reasonable approximations, our calculations can be carried out analytically. Our main results
are the non-universal conductance fluctuation amplitudes as a function of the sample length
L, for arbitrary impurity layer thicknesst . For a uniform distribution of the impurities
we recover the known results of UCF, while for non-uniform distributions we reveal the
destruction of UCF by the ballistic region. Our results provide some answers concerning
the general questions discussed above, and clearly reveal the crossover behaviour of the
fluctuation amplitude from the usual quasi-1D UCF situation to that of the mixed regime.
Finally, we confirm our analytical predictions by a direct numerical evaluation of the
Landauer–B̈uttiker formula [20].

The paper is organized as follows. In the next section a simple model is presented to
illustrate the difference between surface roughness scattering and the bulk scattering. We
obtain useful intuition concerning the correlated scattering across the ballistic centre region
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of the sample. Then in section 3 we derive the expression [19] for conductance fluctuations
in the mixed transport regime where impurities are distributed in a layer near the sample
boundaries. In section 4 the analytical formula is evaluated and results discussed. Section 5
presents a direct numerical evaluation of the Landauer–Büttiker formula for the dirty wire,
which provides a quantitative confirmation of the analytical predictions. Finally a summary
is given in section 6. The tedious algebraic analyses have been grouped into four appendices.

2. Simple model with impurities only on surfaces

To develop intuition concerning a new ingredient in the theory of the ‘mixed’ transport
regime, we first examine a very simple two-dimensional model, putting random impurities
exactly on two opposite boundaries of a sample as shown in figure 1(a). There are
no impurities in the bulk region of the sample. Current flow is in the plane of this
figure, parallel to the boundaries. Clearly this model mimics, to some extent, the surface
roughness scattering [4, 21, 22, 23]. We deduce a general theory for this system, in
particular concentrating on the renormalized energy of the electrons and the imaginary
part of the electron self-energy in the single-particle approximation. Then we study the
three-dimensional model as shown in figure 1(b), with impurities on all four boundaries,
and current flow perpendicular to the plane of the figure. The purpose of this exercise is
two-fold. First, we want to find the main differences between the non-uniform impurity
scattering and the uniform bulk impurity scattering: these differences lead to a change of the
transport characteristics. Second, we attempt to investigate the correlated scattering from
different boundaries due to the wave-like nature of the electrons across the ballistic centre
region of the sample.

Figure 1. Schematic view of the cross sections of dirty wires. (a) For a 2D wire, impurities lie
only on the upper and lower boundaries and current flows from, say, left to right. (b) A cross
section for a 3D wire where impurities lie on all boundaries, and current flows, say, into the
page.

We start by considering the motion of electrons in an array of scattering potentials
V(xj −Xi ) located at positionsXi which are randomly placedexactlyon the upper and
lower boundaries of the wire (see figure 1(a)). Thej th electron has momentumPj and
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effective massm∗. Neglecting the electron–electron interaction, the Hamiltonian then reads

H =
∑
j

P2
j

2m∗
+
∑
j

boundaries∑
i

V(xj −Xi ).

It is convenient to approximate each potentialV(x) as aδ-function of strengthu, and
then to rewriteH in its second-quantized form [24]. We have

H =
∑
P
εPa

†
PaP +

∑
q

u[ρuq + ρlq]
∑
P
a
†
P+qaP (1)

wherea†P andaP are creation and annihilation operators for momentumP, εP is the kinetic
energy of the electrons, andρuq =

∑upper

i e−iq·xi andρlq =
∑lower

i e−iq·xi are the impurity
densities on the upper and lower boundaries. Since impurities only lie exactly on the
boundaries, namely the planesyi = y1 andyi = y2, the impurity densities can be rewritten
as

ρuq = e−iqyy1

upper∑
i

e−iq‖·ri ρlq = e−iqyy2

lower∑
i

e−iq‖·ri

where we defineq = {q‖, qy} ≡ {qx, qz, qy}, xi = {ri , yi} ≡ {xi, zi, yi}, so thatq‖ and r are
respectively the projections of the wavevectorq and space coordinatexi on to the impurity
plane.

Because the interaction between electrons is neglected, the properties defined above in
terms ofN-particle states of the system can be calculated in terms of a Green’s function
representing a single electron. The equation of motion [24] of the one-particle Green’s
functionG(P,P ′; t) is(

i
∂

∂t
− εP

)
G(P,P ′; t) = δPP ′δ(t)+ u

∑
q

[ρuq + ρlq]G(P + q,P ′; t).

We write the perturbation solution of the diagonal part ofG(P,P ′; t) in energy space,
G(P,P; ε) ≡ G(P; ε) ≡ G(P), as follows

G(P) = G0(P)+ uG0(P)[ρuq + ρlq]|q=0G0(P)
+u2G0(P)

∑
q

[ρuq + ρlq]G0(P + q)[ρu−q + ρl−q]G0(P)

+u3G0(P)
∑
q

[ρuq + ρlq]G0(P + q)

×
∑
q′

[ρuq′ + ρlq′ ]G0(P + q + q′)[ρu−q−q′ + ρl−q−q′ ]G0(P)+ · · ·.

To obtain the average of the above Green’s function over impurity configurations we
use [24]

ραq‖ = niδq‖,0

ραq‖ρ
β
−q‖ = n2

i δq‖,0+ ni if α = β
= n2

i δq‖,0 otherwise

(α, β = l, u)
whereni is the number of impurities on each impurity surface, which is assumed to be the
same for both surfaces. We have assumed that there is no correlation between the impurity



Conductance fluctuation theory for a mixed transport regime 10039

configurations on the upper and lower boundaries. We obtain

G(P) = G0(P)+ uG0(P)[ρuq + ρlq]|q=0G0(P)

+u2G0(P)
∑

q

[ρuq + ρlq][ρu−q + ρl−q]G0(P + q)G0(P)

+u3G0(P)
∑
q

∑
q′

[ρuq + ρlq][ρuq′ + ρlq′ ][ρu−q−q′ + ρl−q−q′ ]

×G0(P + q)G0(P + q + q′)G0(P)+ · · ·. (2)

Now we analyse the Feynman diagrams corresponding to the above Green’s function
equation taken to third order. As shown in figure 2, there are eleven types of irreducible
impurity scattering diagram, corresponding to (2). The first diagram of figure 2 is the only
first-order diagram. The second to fourth diagrams are the second-order contributions, and
the others are the third-order contributions. The first-order diagram in the surface scattering
problem is the same as that in the uniform bulk scattering case [24]. However from second
order on, new impurity scattering diagrams appear. For example, the fourth, tenth, and
eleventh diagrams in figure 2 do not exist in the uniform bulk scattering case. These
diagrams correspond to the correlated scattering of electrons by impurities between different
boundaries: in figure 2 we use a curved solid line to represent the electrons propagating
from one surface to another surface and suffering impurity scattering at different surfaces.
Note that indicesα andβ denote either the upper or lower surface, butα 6= β.

Retaining only the second-order terms, we obtain the Green’s function expression

G(P) = G0(P)+ 2uni [G0(P)]2+ 2u2[G0(P)]2

×
∑
q

G0(P + q)[ni + n2
i (1+ cos[qy(y1− y2)])δq‖,0]

where the term with cos[qy(y1− y2)] represents the interference and correlation of electron
scattering between the upper and lower boundaries. If the impurities were distributed
uniformly in the wire, then this term would lose its dependence onqy , following an average
over y1 and y2, but in the present case it leads to new physics in respect to conductance
fluctuations. Similarly, in the following section, it leads to new results after averaging over
impurities lying in layersnear the boundaries.

From the second-order equation we read off the relevant first- and second-order
irreducible self-energies

6(1) = 2uni
6(2) = 2u2

∑
q

G0(P + q)[ni + n2
i cos[qy(y1− y2)]δq‖,0]

and calculate the second-order self-energy contribution using the definition of the Green’s
function,G0(P) = 1/(ε − εP + i0+) with renormalized energyεP → εP + 2uni . We have

6(2) = 2u2ni
∑
q

1

ε − εP+q − 2uni + i0+
+ 2u2n2

i

∑
qy

cos[qy(y1− y2)]

ε − εP+qy − 2uni + i0+
.

In the above equation, the first term corresponds to the normal Born scattering [24] and
gives the normal lifetimeτn. The second term corresponds to the non-Born scattering, called
anomalous scattering, and creates the anomalous lifetimeτa. We define

1

τn
≡ 4πu2niNεF (3)
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Figure 2. The impurity scattering diagrams for the case where impurities are distributed only
on upper and lower boundaries. This corresponds to equation (2).

whereNεF is the density of states and

1

τa
≡ 2u2n2

i

∑
qy

cos[qy(y1− y2)] δ(ε − εP+qy − 2uni).

From the two roots of the equationε − εP+qy − 2uni = 0, which are

q(1,2)y = −Py
h̄
± 1

h̄

√
2mε − P2

‖ − 4muni (4)

where a superscript(1) indicates a ‘+’ sign and(2) a ‘−’ sign, we rewrite the anomalous
lifetime τa as

1

τa
= 2mu2n2

i (y1− y2)

h̄2|q(1)y − q(2)y |
[cos[q(1)y (y1− y2)] + cos[q(2)y (y1− y2)]] . (5)

The three-dimensional version of our problem is slightly more complicated. We consider
the impurities to lie on all the four boundaries, the cross section of the wire is shown in
figure 1(b). We write the system Hamiltonian in the form

H =
∑
P
εPa

†
PaP +

∑
q

u[ρupperq + ρlowerq + ρlef tq + ρrightq ]
∑
P
a
†
P+qaP

with two new termsρlef tq and ρrightq in the expression for the impurity density. The
definitions of the two new terms are as before, but impurities lie on the left or on the
right boundary. To calculate the electron irreducible self-energies up to the second order
of perturbation, it is necessary to calculate the impurity configuration average. Similarly to
before, since impurity configurations on different boundaries are not correlated, we obtain

ρ
upper
q + ρlowerq + ρlef tq + ρrightq = 2ni [δq‖xz,0+ δq‖yz,0]
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and

[ρupperq + ρlowerq + ρlef tq + ρrightq ][ρupper−q + ρlower−q + ρlef t−q + ρright−q ]

= 4ni + 2n2
i [δq‖xz,0+ δq‖yz,0] + 2n2

i [δq‖xz,0 cos[qy(y1− y2)]

+δq‖yz,0 cos[qx(x1− x2)]] + 8n2
i δq,0 (6)

whereq‖αβ (α, β = x, y, z) represents the wavevector projection onto theαβ-plane. We
also assume, as before, that each of the four boundaries has the same impurity numberni .
We conclude that

1

τ
(f our)

(total)

= 2
1

τ
(two)

(total)

whereτ (f our)(total) andτ (two)(total) represent the lifetimes of electrons in the four-boundary and two-

boundary impurity systems, respectively. Again,q(1)y andq(2)y in τ (f our)(total) are determined by
the roots of equationε − εP+qy − 4uni = 0.

From the above analysis of this simple model we conclude that the key difference
between the uniform impurity distribution problem and the non-uniform one is that in the
latter case there exists an additional specific electron scattering correlation. This leads to
results with some peculiar properties, which we discuss in detail in the next section.

3. Conductance fluctuations due to impurity layers

The above simple models provide intuition about what happens when the impurities are
distributed at the boundaries. Namely, contributions from correlated scattering enter our
analysis of the self-energies, and consequently, provide an unexpected contribution to the
conductance fluctuations. However, in realistic and interesting situations, impurities do not
only lie exactly on the boundaries of a wire. In general, impurities are distributed randomly
in a region of finite thickness near the boundaries. Accordingly, a more realistic model
would be similar to that shown in figure 3, in which impurities lie randomly along the two
boundaries of the wire within impurity layers of equal thicknesst .

Figure 3. Schematic view of a 2D quantum wire of widthW with impurity layers along the
upper and lower boundaries. The impurity layer width ist .

The system Hamiltonian still retains the same form as (1). Differences first arise in the
average of the impurity density and the average of the product of impurity densities in the
second order of perturbation theory. For both the three-dimensional and the two-dimensional
cases we have the following relations:

ραq = nifqy (t)δq‖,0
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[ρuq + ρlq][ρuq + ρlq] = 2ni + 2ni [ni |fqy (t)|2+ Re[fqy (t)]]δq‖,0

where (α = u, l) and the functionfqy (t), which is assumed to be Gaussian, describes

the impurity distribution away from the boundaries:fqy (t) =
∫ t

0 e−γy
2
eiqyydy/

∫ t
0 e−γy

2
dy.

The parameterγ controls the width of the distribution: a very smallγ gives essentially
a uniform distribution in the layert , while a largerγ gives a diffusive distribution with
higher concentration of impurities near the quantum wire boundary.

We calculate the electron lifetimes as discussed in the last section. In the three-
dimensional case, we find that the normal electron lifetime is the same as (3), while the
anomalous lifetime becomes

1

τa
= 2mu2niW

h̄2|q(1)y − q(2)y |
[
ni [|fq(1)y (t)|2+ |fq(2)y (t)|2] + Re[f

q
(1)
y
(t)+ f

q
(2)
y
(t)]

]
. (7)

HereW is the width of the wire in they-direction, which is actually equal toy1−y2 of the last
section.q(1)y andq(2)y are still determined by the roots of the equationε− εP+qy −2uni = 0.
Since the impurity scattering strengthu is small we can rewrite the expressions forq(1)y and
q(2)y approximately, using (4)

q(1)y ≈ 0 (8)

and

q(2)y ≈ −
2Py
h̄
. (9)

Substituting (8) and (9) into (7), we have

1

τa
= mu2niW

h̄|Py |
[
ni [1+ |fPy (t)|2] + 1+ Re[fPy (t)]

]
.

The total electron elastic scattering lifetime is 1/τ = 1/τn + 1/τa. We obtain:

1

τ
= mu2niLW

h̄2

[
2kFW

π
+ h̄

|Py |L [ni [1+ |fPy (t)|2] + 1+ Re[fPy (t)]]

]
wherekF is the Fermi wavevector, and we use the three-dimensional density of one-spin
states for free electrons,NεF = 2πV

h3 (2m)3/2εF 1/2 with sample volumeV . For the two-
dimensional case 1/τ is found to be

1

τ
= 2mu2niLW

h̄2

[
1+ h̄

2|Py |L [ni [1+ |fPy (t)|2] + 1+ Re[fPy (t)]]

]
(10)

whereNεF = 2πmS/h2 is the free-electron two-dimensional density of states for a sample
of area S. The transverse momentum dependence of the electron lifetime makes the
conductance fluctuation analysis much more complicated. However, an analysis is still
possible after we make some physically reasonable approximations.

According to the theory of Al’tshuler, Lee and Stone [2, 3], to compute the conductance
fluctuations we need to evaluate bubble–bubble diagrams as shown in figure 4. In particular
the diffusion operator and the current function must be obtained. These quantities differ
from those for the corresponding uniform bulk scattering case, as we will show in this
section.

We first focus on the current function in the three-dimensional case. For this purpose
we need to evaluate the integral of the product of four Green’s functions. Because we are
only interested in the limits of small momentum transferq and frequency transferω, we
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Figure 4. Conductance fluctuation diagrams including (a) double, (b) triple, and (c) quadruple
bubble–bubble connections.

approximateτ(qy − Py) by τ(Py). The tedious algebra of evaluating the product of four
Green’s functions is presented in Appendix A, so here we quote only the result:

I1 ≡
∫

dP
(2πh̄)3

GR(P, ε)GA(P, ε − h̄ω)GR(q − P, ε)GA(q − P, ε − h̄ω)

≈ 4π
∫

dPy
(2πh̄)

N2D(ε − ε⊥)[τ(Py)]3 (11)

whereN2D(ε−ε⊥) is the two-dimensional density of states; for free electronsN2D(ε−ε⊥) =
NεF . Obviously, the integral of the product of the four Green’s functions,I1, is no longer a
constant as in the uniform bulk scattering case (see equation (A3) in [25]). It now depends
strongly on the transverse momentum transferPy . This leads to anisotropic characteristics
in momentum space.

The diffusion operator for the three-dimensional case also differs from its counterpart
for uniform scattering which is proportional toDq2− iω, whereD is the diffusion constant.
For the case of non-uniform scattering we give a detailed derivation of this operator in
Appendix B, and obtain the real space expression

1

u2ni
− 3

4
0(1) − iω0(2) − 1

3
v2
F0

(3)∇2+ ivF0
(4) ∂

∂y

(
∂

∂x
+ ∂

∂y
+ ∂

∂z

)
− 1

4
0(5)

∂2

∂y2
. (12)

This expression for the diffusion operator in three-dimensional real space determines
the electron scattering characteristics. Once the eigen-solutions of this operator are found,
we are able in principle to calculate the electron scattering vertex functions, and using the
same techniques as described in [25] to compute the conductance fluctuations. In practice,
because the eigenfunctions of the diffusion operator are no longer an orthogonal set, it does
not seem possible to solve the eigenvalue problem (12) in an exactly analytical fashion.
Thus further approximations are needed to advance our analysis.

Of course, the same difficulties exist for the simpler two-dimensional problem. Thus,
without loss of generality, we will proceed by investigating the conductance fluctuations of
a two-dimensional quantum wire, where our results can be checked by extensive numerical
simulations. Clearly a similar procedure could be applied in three dimensions. From the
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detailed algebra of Appendix C, we thus obtain the eigenvalue equation for the diffusion
operator in two dimensions:[

C0+C1
∂2

∂x2
+C2

∂2

∂y2
+C3

∂2

∂x∂y

]
Qm(x) = λmQm(x) (13)

where theCi are constants defined in Appendix C.
Although the eigenfunctions of this operator are not an orthogonal set, fortunately,

however, we can show through explicit numerical solution (see Appendix D), that the
eigenvaluesλm fall into many densely packed clusters: the eigenvalues in each cluster
are very close to each other. Numerically we can evaluate the overlap integrals of any
two normalized eigenfunctions corresponding to different eigenvalues. The results turn
out to be either near 1 for those eigenfunctions belonging to the same cluster, or near 0
for eigenfunctions from different clusters. This is not surprising in practice since we can
easily check that|C3| � |C1| or |C2|. Thus it is a reasonable approximation to regard the
eigenfunctions as being orthogonal, which allows us to use the same equation (equation (A7)
in [25]) to calculate the diffusive vertex function.

Using the current function determined by the integralI1 of (11) and the diffusion
propagator as properly expanded using the eigenfunctions of the diffusion operator, we can
write in general the three exact conductance fluctuation expressions,Fa, Fb, andFc which
are related to the three types of bubble–bubble connection Feynman diagram in figure 4.
For the details we refer interested readers to [25]. The final results are:

Fa = Na
[
v2
Fniu

20(3)

L2

]2∑
m

∑
m′

[
∫

dxQ∗m(x)Qm′(x)][
∫

dxQ∗m′(x)Qm(x)]

λmλm′
(14)

Fb = −NbL2

[
v2
Fniu

20(3)

L2

]3 ∑
m

∑
m′

∑
m′′

[
∫

dxQm(x)Q
∗
m′(x)]

λm

×
[
∫

dxQm′(x)
∂
∂y
Q∗m′′(x)][

∫
dxQm′′(x)

∂
∂y
Q∗m(x)]

λm′λm′′
(15)

Fc = NcL4

[
v2
Fniu

20(3)

L2

]4∑
m

∑
m′

∑
m′′

∑
m′′′

[
∫

dxQm(x)
∂
∂y

Q∗m′(x)][
∫

dxQm′(x) ∂∂yQ
∗
m′′(x)]

λmλm′

×
[
∫

dxQm′′(x)
∂
∂y

Q∗m′′′(x)][
∫

dxQm′′′(x) ∂∂yQ
∗
m(x)]

λm′′λm′′′
. (16)

Using the above formula we can obtain the full expression of the conductance fluctuations
in the absence of a magnetic field. Similarly to [25], we finally find the amplitude of the
conductance fluctuations:

F total = 2(Fa + Fb + Fc). (17)

4. Discussion of the analytical results

In the last section we derived the expression for the conductance fluctuations, equations
(14)–(17), for our non-uniform system. However, due to the complicated appearance of
the result, it remains difficult to gain insight into the situation. As discussed previously,
a significant complication is due to the transverse momentum dependence of the electron
lifetime. If in a gross approximation this is neglected, the theory is dramatically simplified,
and gives us a rough estimate of the conductance fluctuations together with the needed
intuition. We first investigate this limit before presenting the results of the full analysis.
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Neglecting the momentum transferqy dependence onτ , we obtain, instead of (26) of
Appendix B, the 2D integral

I2 = 1

h̄

∫
dPyN1D(ε − ε⊥)

[
τ(Py)(1+ iωτ(Py)− ivF qτ(Py)− v2

F q
2[τ(Py)]2)

]
.

Using the definitions of0(1), 0(2), and0(3) defined in (30) of Appendix C, we have

I2 = 0(1) + iω0(2) − iqvF0
(2) − 1

2
v2
F q

20(3). (18)

We further approximate the momentumPy in the electron lifetimeτ(Py) by its average
valuePy , so that the diffusion operator becomes

1

u2ni

[
1− 2πu2niN2D(ε)τ

h̄

[
1+ iωτ − ivF qτ − 1

2
v2
F q

2τ 2

]]
. (19)

We emphasize that the scattering timeτ which appears above is not given by the
corresponding expression for the uniform bulk scattering, namely ¯h/τ 6= 2πu2niN2D(ε).
It is given by the expression in (10), withPy replaced by its average value. We can thus
rearrange (19) as

1

u2ni

[
1− 2πu2niN2D(ε)τ

h̄

[
1

2
+ iωτ − 1

2
v2
F τ

2

(
q + i

vF τ

)2]]
.

Further, and for the same reason discussed in Appendix B, we find that|i/vF τ | � q, so
that the diffusion operator takes the standard form with a term proportional toq2:

1

u2ni

[
1− 2πu2niN2D(ε)τ

h̄

[
1

2
+ iωτ − 1

2
v2
F τ

2q2

]]
. (20)

The eigenfunctions of this operator are precisely the same as those for the case of uniform
bulk scattering, as described in [25], if we consider the same boundary conditions, but the
eigenvalues are different.

At this point, we verify that in the appropriate limit our theory recovers the results
for uniform bulk scattering as described in [25]. When the impurities in the wire are
distributed completely uniformly, the electron lifetimeτ becomes a constant, and in all the
above calculations for our two-dimensional system we replace∫

dPyN1D(ε − ε⊥)
∫

dε′ → 2πN2D(ε)

∫
d�k
Sz

∫
dε′.

We also note that the third term on the right-hand side of (18) vanishes since∫
d�k
Sz

vF (k)[· · ·] = 0.

In addition we have∫
d�k
Sz

[vF (k)]
2 = 1

2
v2
F .

Therefore (18) becomes

I2 = 2π

h̄
N2D(ε)τ

[
1+ iωτ − 1

2
v2
F q

2τ 2

]
and the diffusion operator is

1

u2ni

{
1− 2πu2ni

[
1

h̄
N2D(ε)τ

[
1+ iωτ − 1

2
v2
F q

2τ 2

]]}
.
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Using h̄/τ = 2πu2niN2D(ε), the diffusion operator reduces exactly to the same form as for
the uniform case [25, 26],

1

u2ni

[
iωτ − 1

2
v2
F q

2τ 2

]
= τ

u2ni
[iω −Dq2]

with D = 1
2v

2
F τ .

Finally, to obtain numerical values of the conductance fluctuations for the two-
dimensional dirty wire, we need to evaluate the final expressions (14)–(16) numerically. This
involves a numerical determination of the eigenfunctions and eigenvalues of the diffusion
operator, using the prescription discussed in the last section. A very important point with
deep physical meaning is the determination of the so-called electron energy correlation
range [25, 27]4Ec. This quantity is essentially the energy transfer in the two-particle
scattering vertices, namely the energy transfer between the two diffusion bubbles. In our
numerical calculations we replace the energy transferω by this quantity [25]. Physically
4Ec gives an energy scale: for a temperaturekBT � 4Ec the phases of the various
transmission paths differ significantly so that the contributions of these paths average out in
our fluctuation calculations. In other words, a change in the applied voltage by4Ec/e with
a carrier chargee would alter the electron energy by4Ec, and this is sufficient to cause
phase shifts to individual paths such that they become uncorrelated with their initial values.
As a consequence of impurity scattering, the phase differences between each pair of paths
will change in an essentially random manner, so that these paths will not contribute to the
conductance fluctuations [28].

The discussion of4Ec can be traced back to the work of Thouless who formulated a
scaling theory description of the electron localization problem [29] which was important for
subsequent developments. It was concluded that (at least in one dimension) the conductance
g is proportional to(4E/4W)2[30], where4E and4W are respectively the bandwidth
of the electron eigenstates and the energy level spacing in aD-dimensional sample with
volumeLD. The energy correlation range is related to the energy spread of a wavepacket,
and thus to4W (whereg ∼ O(1)), a quantity that can easily be estimated for both the
ballistic and the diffusive transport regimes.

In the ballistic case, the energy correlation range is therefore given by4kL ∼ 1 or

4Ec ∼ h̄vF
L

for L� l. (21)

Following Imry [27], we rewrite this expression as ¯hvF /
√
LW . In the diffusive regime the

distance travelled by an electron across the system is given byvFL
2/D. ReplacingL in

(21) by this length, we find

4Ec ∼ h̄D
L2

for L� l. (22)

This energy has been shown [31] to be identical to the parameter4W , consistent with our
expectations.

In our non-uniform system, there exist two separated regions. One has an impurity
distribution in the layers of thicknesst along the boundaries; this is the diffusive region.
The other is the impurity-free central region which permits ballistic transport. Thus the
correlation energy4Ec should be an admixture of both diffusive and ballistic contributions.
Considering the probabilities of electrons being in each region, and using the above results,
the simplest form for4Ec is

4Ec ∼ 2t

W

v2
F τ(Py)h̄
dL2

+
(

1− 2t

W

)
h̄vF√
LW

. (23)
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Here τ(Py) is the average value ofτ(Py) over momentumPy ; d = 2 or 3 for 2D or
3D wires; and the factors 2t/W and (1− 2t/W) refer to the probability of the electron
being located in the impurity region and the central ballistic region, respectively. Using this
choice of4Ec to replace the energy transferω in the diagrammatic calculations, we can
obtain the final numerical results.

A first hint of the effects of the non-uniform impurity distribution can be obtained by
using the approximate formula (19), valid when thePy dependence of the electron relaxation
time is averaged out. As discussed above, this gross approximation makes the algebra very
similar to that for the usual UCF calculations [25] since the diffusion propagator becomes
isotropic as shown in (20). The numerical curves of conductance fluctuations [rms(g)]2

as a function of the wire lengthL for various impurity layer thicknessest were shown in
figure 1 of [19] for several givent . We refer interested readers to [19] for numerical details.
Here we merely mention that the conventional UCF is obtained fort = W/2, while for
smallert the conductance fluctuations decay smoothly to zero as the length of the wire is
increased. Such a decay is also faster for smallert . These observations can be understood
as resulting from the effect of localization [15, 16, 32] for which a discussion is provided
in [19].

When we include all the anisotropies, the general behaviour of the conductance
fluctuations as a function of the wire lengthL is similar to the approximate results discussed
above; the numerical curves were shown in figure 2 of [19]. Essentially, the conductance
fluctuation [rms(g)]2 still drops rapidly asL increases and becomes very small for large
values ofL, and there are clear oscillations of [rms(g)]2 as L is increased [19]. The
oscillations are not present in the ‘isotropic theory’, since it does not respect the lateral
anisotropy. We have also checked that when [rms(g)]2 is plotted against other parameters
such as the Fermi energy or the impurity layer thicknesst , similar oscillations are observed,
as shown in figure 5. This indicates that the oscillations result from resonance behaviour
since wavefunctions and their derivatives must match across the different layers in the wire.
Finally, our numerical values obtained by evaluating (17) are consistent [19] with those
obtained from simulations of rough boundary scattering [18] if we interprete the thickness
t as playing the role of the roughness amplitude.

5. Numerical simulations

An alternative approach to the problem studied so far is provided by direct numerical
simulations, employing the Landauer–Büttiker formula

G = 2e2

h

N∑
i=1

Ti (24)

to compute the conductance and its fluctuations. Here{Ti} is the transmission coefficient of
modei, so that we must compute the transmission coefficients for all the subbands above the
propagating threshold for a given Fermi energy. This not only provides a quantitative check
of our analytical results, but also shows how the contributions of successive propagating
subbands contribute to the conductance fluctuations.

For the simulation we use a hard wall impurity potential to simulate theδ-function
interaction between electrons and impurities which was used in our analysis. We imagine
that the dirty quantum wire of figure 3 is attached to perfect leads with the same width and
hard wall potential. Then the dirty wire region provides the scattering. Electrons come from
the left-hand lead, scatter in the dirty wire region, and reflect back or transmit through to
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Figure 5. The conductance fluctuation oscillations (in units of(e2/h)2) as a function of (a) the
Fermi energy, witht = W/6; and (b) the impurity layer thicknesst , with kW = 55.

the right-hand lead. The quantum scattering of electrons is solved by using a finite element
numerical scheme [33, 34] for the single-electron effective mass Schrödinger equation.

Essentially, we discretize the scattering region into a fine grid of triangles. The
wavefunctions are numerically evaluated inside this region, and then matched at its
boundaries to the wave functions inside the leads, which are evaluated separately. This
matching procedure gives the various transmission coefficients. The finite element method
reduces the complicated scattering problem into a sparse matrix calculation and is very
generally applicable to quantum device simulations: it allows us to obtain quantitatively
accurate results. Typically we used 550 to 1400 (the largest was 5000) independent impurity
configurations for the ensemble averaging of each subband.

In figure 6(a) and (b) we show the conductance as a function of sample number for
two wires with t = W/2 (uniform case) andt = W/6 (non-uniform case), within the first
propagation subband. It is evident that in the uniform case the conductance is smaller
because of more impurity scattering. For the 4000 impurity configurations examined, the
first subband transmission gives an average conductance value aroundg ∼ 0.25 with quite
large sample-to-sample fluctuations. In the non-uniform case oft = W/6 the conductance
is larger because there are fewer impurities due to the presence of the ballistic region. For
this case we find that averaging over only 1400 impurity configurations provides statistically
significant values for the various physical quantities.

To calculate thesample-to-sampleconductance fluctuations for our quantum wires we
need to fix the energy of the incoming electrons. In particular, the energy must not be so
low that conduction is inhibited [32]. To determine a reasonable energy, we recall what is
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Figure 6. Conductance of different impurity configurations (in units ofe2/h) in the first subband:
(a) uniform case (t = W/2) with ni = 40, and (b) non-uniform case (t = W/6) with ni = 26.
For both wiresL = W .

usually done in the UCF literature. In [25], Lee, Stone and Fukuyama gave a comparison of
sample-to-sample conductance fluctuations to those due to changing the applied magnetic
field or the Fermi energy in a single sample. Using the Anderson model with disorder, their
numerically simulated data were found qualitatively to support the ‘ergodic hypothesis’.
Accordingly, we first used a single sample and computed its conductance fluctuations by
varying the energy. We then averaged the results over energy ranges around 10×4Ec. For
a wire with a uniform impurity distribution, i.e.t = W/2, and for the first subband, our
results are shown in figure 7. Figures 7(a), (b) were obtained for energy averaging over
8×4Ec; figures 7(c), (d) are for 10×4Ec; and figures 7(e), (f) are for 15×4Ec. From
these results it is clear that both the conductance and its fluctuations have strong energy
dependences at low energy, and weak dependence at high energy. In other words, the UCF
regime is found at higher energies [32]. In particular, our data show that at aroundkW = 55
(energyE = 16.2 meV), the conductance fluctuations are almost independent of the Fermi
energy. Thus, in all our subsequent calculations of the sample-to-sample fluctuations we fix
the incoming electron energy at this value.

Another interesting finding of our simulations is that the correlation energy in general
becomes larger as we decrease the thickness of the impurity layers. This is shown in
figure 8, because the peak-to-peak distance [25, 27] in energy units is essentially4Ec.
Such behaviour is reasonable since with the decrease of the impurity layer thickness, the
ballistic region becomes more dominant, so enhancing the correlation range. In the limit of
no impurities, we have a perfect straight quantum wire and no conductance fluctuations. In
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Figure 7. The conductance fluctuation amplitude (in units of(e2/h)2) and conductance (in units
of e2/h) averaged over different multiples of the correlation energy4Ec: (a) and (b) 8×4Ec;
(c) and (d) 10×4Ec; (e) and (f) 15×4Ec.

this case4Ec →∞.
For the incoming electron energykW = 55 there are 17 transport subbands to be

computed individually, each requiring to be averaged over a large ensemble of samples as
discussed above. The contributions of these 17 subbands to the conductance and to the
conductance fluctuations fort = W/6 are shown in figure 3 of [19] for wire lengthL = W ,
and here in figure 9 forL = 2W . From these figures it is clear that the impurity-averaged
conductance of each successively higher subband is progressively smaller. This is because
the higher the subband, the smaller its longitudinal (x-direction) momentum, and with
smaller longitudinal momentum it is more difficult for an electron to traverse the dirty wire.
This is also consistent with the numerical simulations of rough boundary scattering [15, 16].
For both values ofL, the conductance shows almost identical behaviour as a function of



Conductance fluctuation theory for a mixed transport regime 10051

Figure 8. Conductance (in units ofe2/h) as a function of the Fermi energy. The solid line is
for the uniform case (t = W/2) and the dashed line is for the non-uniform case (t = W/6).

Figure 9. Results from the finite element numerical simulation forL = 2W . (a) The impurity
averaged conductance (in units ofe2/h) for each of the 17 subbands. (b) The impurity averaged
fluctuations [rms(g)]2 (in units of (e2/h)2) for all the subbands. The system parameters are the
same as those in the theoretical analysis.

subband. This is understandable since the conductance itself is determined largely by the
ballistic region and the ballistic transport is independent of the wire length [1]. On the
other hand, the conductance fluctuations do show differences for the two lengths: they are
largely determined by the impurity layers so that the wire length plays a role. In addition as
seen in figure 3 of [19] and figure 9 here, the first and last subbands contribute less to the
fluctuations than the others. This is due to the upper and lower bounds of the conductance
which each transport subband can contribute:e2/h or zero. Since the lowest and highest
subbands contribute values close to these bounds (see figure 3 of [19] and figure 9; see also
figure 5), their fluctuations are limited. Finally we also notice that the contributions of the
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individual subbands to the fluctuations seem to be more uniform in the longer wire. We
believe that this is because longer wires provide more impurity scattering which leads to
similar interference events for all subbands.

When adding up all the contributions according to the Landauer–Büttiker formula
we obtain the conductance fluctuations for the two wires: forL = W [19] we obtained
0.13± 0.01 (e2/h)2; for L = 2W it is 0.09± 0.01 (e2/h)2. The error bars came from the
impurity averaging. For these same wires our analytical theory predicted 0.129 (e2/h)2 and
0.082(e2/h)2, so that our simulation results are in reasonable agreement with our analytical
predictions.

6. Summary

The theory of conductance fluctuations in the mesoscopic regime has been very successful
in describing the anomalies of quantum transport at low temperatures. It predicts a universal
conductance fluctuation at zero temperature. The reason is that in the mesoscopic regime the
phase coherence length is the largest length scale: this implies that the situation is controlled
by the relative phase information of the various quantum paths in a sample dominated by
diffusive scattering.

This theory for the mesoscopic regime has only been applied to systems where the
impurities are uniformly distributed. However, in this paper we show that it can be
generalized to cases where the impurity distribution is not uniform. In particular we
analytically investigate the ‘mixed’ transport regime where both mesoscopic and ballistic
characteristics play a role. We believe this is a useful formal theoretical step: the non-
uniform dirty wire leads to a new set of Feynman diagrams describing the correlated
impurity scattering across the wire; it requires a careful examination of the anisotropic
diffusion operator and its mathematical character; and the physical concept of the energy
correlation range must be generalized. With these modifications we are able to predict
the nature of conductance fluctuations in a ‘dirty wire’ system, and in particular we find
that while the conductance is largely controlled by the ballistic region, its fluctuations are
essentially controlled by the impurity layers. Because of the presence of a ballistic region,
the conductance fluctuations are not universal and depend on system parameters such as
the impurity layer thicknesst . The fluctuations decay with the wire lengthL for a givent ,
and such a decay is faster for wires with smallert due to electron localization effects in the
impurity layers. The general behaviour predicted by our analytical approach is consistent
with previous numerical simulations of roughness scattering, and is quantitatively consistent
with our numerical simulations for two wires. From the device application point of view,
it is important to have a detailed understanding of the sample-dependent non-universal
transport characteristics of various quantum conductors, and the diagrammatic formulation
presented here provides a first analytical step in this direction.

In this paper we have used two different theoretical approaches, the Feynman
diagrammatic technique and the finite element numerical simulation method, to study the
conductance fluctuations of electron transport in the ‘mixed’ regime. The work presented
here includes a number of technical advances and developments which are useful for
the studies of other quantum transport phenomena in semiconductor nanostructures. For
instance, we can extend the diagrammatic theory used here to study the same dirty wire
(non-uniform impurity distribution) but including an applied magnetic field. Secondly,
the diagrammatic analysis can be extended to include a non-zero temperature. These are
difficult problems, whose solution will definitely improve our understanding of the important
‘mixed’ transport regime. Concerning numerical simulations, we have used a finite element
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scattering approach with no fitting parameters to check our analytical predictions. Although
only two systems were simulated because of the requirement of exceedingly large computer
resources†, our theoretical picture is quantitatively confirmed. Simplified calculations, based
perhaps on tight binding models, may overcome these limitations and provide further results
for the ‘mixed’ transport regime. We hope to report such investigations in the future.
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Appendix A. The 3D calculation of I1

The calculation of the current function in three dimensions (3D), or two dimensions, requires
the integral of the product of four Green’s functions [25]. In the limits of small momentum
and frequency transfers,τ(qy − Py) ≈ τ(Py). Thus this integral becomes

I1 ≡
∫

dP
(2πh̄)3

GR(P, ε)GA(P, ε − h̄ω)GR(q − P, ε)GA(q − P, ε − h̄ω)

=
∫

dPy
(2πh̄)

∫
dP‖
(2πh̄)2

1

ε − εP − i h̄
2τ(Py )

1

ε − εP + h̄ω + i h̄
2τ(Py )

× 1

(ε − h̄vF q)− εP − i h̄
2τ(Py )

1

(ε − h̄vF q)− εP + h̄ω + i h̄
2τ(Py )

=
∫

dPy
(2πh̄)

∫
N2D(ε − ε⊥)dε‖

× 1

ε‖ + ε⊥ − εP − i h̄
2τ(Py )

1

ε‖ + ε⊥ − εP + h̄ω + i h̄
2τ(Py )

× 1

(ε‖ + ε⊥ − h̄vF q)− εP − i h̄
2τ(Py )

1

(ε‖ + ε⊥ − h̄vF q)− εP + h̄ω + i h̄
2τ(Py )

= 2π i
∫

dPy
(2πh̄)

N2D(ε − ε⊥) 1

h̄ω + i h̄
τ (Py )

(−2)

(h̄ω + i h̄
τ (Py ) )

2− (h̄vF q)2

≈ 4π
∫

dPy
(2πh̄)

N2D(ε − ε⊥)
[
τ(Py)
h̄

]3 1

(1− iωτ(Py))3

≈ 4π
∫

dPy
(2πh̄)

N2D(ε − ε⊥)[τ(Py)]3 (25)

with ε‖ ≡ P2
‖/2m, ε⊥ ≡ P2

y /2m, representing the single-electron energies along the
two-dimensionalxz-plane and they-direction. N2D(ε − ε⊥) is the two-dimensional
density of states, and the expression for the single-electron Green’s function in momentum

† For one set of system parameters (t , L) and averaging over 1000 impurity configurations for each of the 17
propagating subbands, the total computation took about 1100 CPU hours on a SGI R8000 processor.
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representation isGR(A) = 1/(ε − εP ± i h̄2τ ). The approximation

h̄2(−P + q)2
2m

≈ h̄
2P2

2m
+ h̄vF q

has also been used.

Appendix B. The 3D calculation of I2 and the diffusion operator

The integral of the product of two Green’s functions is needed to derive the diffusion
operator. To include thePy dependence of the electron lifetime by impurity scattering, we
must perform the integral including the transverse momentum. Usingε = ε‖ + ε⊥, we
obtain:

I2 ≡
∫

dP
(2πh̄)3

GA(q − P)GR(P)

=
∫

dP‖
(2πh̄)2

∫
dPy
(2πh̄)

× 1

ε‖ + ε⊥ − εP − i h̄
2τ(Py )

1

ε‖ + ε⊥ − εP + h̄ω − h̄vF q + i h̄
2τ(Py−qy)

=
∫

dPy
(2πh̄)

2π i
N2D(ε − ε⊥ + i h̄

2τ(Py ) )

h̄ω − h̄vF q + i h̄2(
1

τ(Py ) + 1
τ(Py−qy) )

≈ i

h̄

∫
dPy

N2D(ε − ε⊥)
ω − vF q + i

2(
1

τ(Py ) + 1
τ(Py−qy) )

.

In the limits of smallω andq, we expand this equation as a series to obtain

I2 = i

h̄

∫
dPyN2D(ε − ε⊥)

 1
i
2(

1
τ(Py ) + 1

τ(Py−qy) )
1

1+ 2(ω−vF q)
i( 1
τ(Py )+ 1

τ(Py−qy ) )


= 2

h̄

∫
dPyN2D(ε − ε⊥) τ (Py)τ (Py − qy)

τ (Py)+ τ(Py − qy)
×
[

1− 2(ω − vF q)τ(Py)τ (Py − qy)
i(τ (Py)+ τ(Py − qy))

−4(ω − vF q)2(τ (Py)τ (Py − qy))2
(τ (Py)+ τ(Py − qy))2 + · · ·

]
.

Noting that the transferqy is very small, we letτ(Py − qy) = τ(Py)− α(Py)qy where

α(Py) ≡ ∂τ(Py − qy)
∂Py

|qy=0.

We obtain

I2 = 2

h̄

∫
dPyN2D(ε − ε⊥)τ (Py)[τ(Py)− α(Py)qy ]

2τ(Py)− α(Py)qy
×
[

1− 2(ω − vF q)τ(Py)[τ(Py)− α(Py)qy ]

i(2τ(Py)− α(Py)qy)

−4(ω − vF q)2[τ(Py)(τ (Py)− α(Py)qy)]2

(2τ(Py)− α(Py)qy)2 + · · ·
]
.
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Expanding this expression inqy , again up to second order, we notice that:

1

2τ(Py)− α(Py)qy =
1

2τ(Py)
1

1− α(Py )qy
2τ(Py )

≈ 1

2τ(Py)

[
1+ α(Py)qy

2τ(Py)
+ (α(Py))

2q2
y

4(τ (Py))2

]
1

(2τ(Py)− α(Py)qy)2 ≈
1

4(τ (Py))2

[
1+ α(Py)qy

τ (Py)
+ 3(α(Py))2q2

y

2(τ (Py))2

]
.

Hence, we obtain

I2 = 2

h̄

∫
dPyN2D(ε − ε⊥)τ (Py)[τ(Py)− α(Py)qy)] 1

2τ(Py)

×
[

1+ α(Py)qy
2τ(Py)

+ (α(Py))
2q2
y

4(τ (Py))2

] [
1+ i2(ω − vF q)τ(Py)

×[τ(Py)− α(Py)qy)] 1

2τ(Py)

[
1+ α(Py)qy

2τ(Py)
+ (α(Py))

2q2
y

4(τ (Py))2

]
−4(ω − vF q)2 [τ(Py)(τ (Py)− α(Py)qy)]2 1

2(τ (Py))2

×
[

1+ α(Py)qy
τ (Py)

+ 3(α(Py))2q2
y

2(τ (Py))2

]]
.

Using the approximation(ω − vF q)2 ∼ v2
F q

2 in the smallω limit we find

I2 = 1

h̄

∫
dPyN2D(ε − ε⊥)

[
τ(Py)

[
1+ iωτ(Py)+ ivFα(Py)qy

[
q + i

2vF τ(Py)

]
−v2

F (τ (Py))2
[
q + i

2vF τ(Py)

]2

− 1

4

]
− (α(Py))

2q2
y

4τ(Py)

]
.

Unfortunately, the above result is so complicated that it leads to an unsolvable diffusion
operator. Thus approximations are needed. We compare the magnitude ofq with
1/2vF τ(Py), and since 1/τ(Py) ∼ u2ni/h̄εF , we have

1

2vF τ(Py)
∼ u2niPF

4h̄ε2
∼
[
u

εF

]2
niπ

4W
.

On the other handq ∼ π/L, so that
1

2vF τ(Py )

q
∼
[
u

εF

]2
niL

4W
.

Furthermore, we haveL ∼ W , andu � εF (which is the important condition for the use
of perturbation theory). Hence we conclude that

1

2vF τ(Py)
� q

and simplify the integralI2:

I2 = 1

h̄

∫
dPyN2D(ε − ε⊥)

[
τ(Py)

[
3

4
+ iωτ(Py)+ ivFα(Py)qyq − v2

F (τ (Py))2q2

]
− (α(Py))

2q2
y

4τ(Py)

]
. (26)
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To simplify the notation we define the following functions

0(1) ≡ 1

h̄

∫
dPyN2D(ε − ε⊥)τ (Py)

0(2) ≡ 1

h̄2

∫
dPyN2D(ε − ε⊥)(τ (Py))2

0(3) ≡ 1

h̄

∫
dPyN2D(ε − ε⊥)(τ (Py))3

0(4) ≡ 1

h̄

∫
dPyN2D(ε − ε⊥)τ (Py)α(Py)

0(5) ≡ 1

h̄

∫
dPyN2D(ε − ε⊥) (α(Py))

2

τ(Py)
(27)

and note that

α(Py) = ∂τ(Py − qy)
∂Py

|qy=0.

With these definitions we rewrite (26) as

I2 = 3

4
0(1) + iω0(2) − 1

3
v2
F0

(3)q2+ ivF0
(4)qyq − 1

4
0(5)q2

y . (28)

Finally we mention that for the sake of simplicity we had writtenvF q instead of the vector
expressionvF · q. In the final expression of (28) there is therefore an additional1

3 factor.
In momentum representation the diffusion operator now becomes [1− u2niI2]/u2ni .

This we write in momentum representation as
1

u2ni
− 3

4
0(1) − iω0(2) + 1

3
v2
F0

(3)q2− ivF0
(4)qyq + 1

4
0(5)q2

y

with a corresponding real space expression

1

u2ni
− 3

4
0(1) − iω0(2) − 1

3
v2
F0

(3)∇2+ ivF0
(4) ∂

∂y

(
∂

∂x
+ ∂

∂y
+ ∂

∂z

)
− 1

4
0(5)

∂2

∂y2
. (29)

Appendix C. The 2D expressions

For two spatial dimensions, the calculation procedures forI1 andI2 of equations (25) and
(26) are the same as in the 3D case. However, the following trivial changes are required.
First, the total electron lifetime is given by (10). Second, the 2D density of statesN2D(ε−ε⊥)
is replaced by the one-dimensional (1D) density of statesN1D(ε − ε⊥) in the integralsI1

andI2. Finally the factor before the term withv2
F in I2 changes from1

3 to 1
2.

With these changes, we rewrite the definitions of the0 functions of (27) in 2D:

0(1) ≡ 1

h̄

∫
dPyN1D(ε − ε⊥)τ (Py)

0(2) ≡ 1

h̄2

∫
dPyN1D(ε − ε⊥)(τ (Py))2

0(3) ≡ 1

h̄

∫
dPyN1D(ε − ε⊥)(τ (Py))3

0(4) ≡ 1

h̄

∫
dPyN1D(ε − ε⊥)τ (Py)α(Py)

0(5) ≡ 1

h̄

∫
dPyN1D(ε − ε⊥) (α(Py))

2

τ(Py)
. (30)
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Furthermore we define the following quantities,

C0 ≡ 1− u2ni

[
3

4
0(1) + iω0(2)

]
C1 ≡ −1

2
u2niv

2
F0

(3)

C2 ≡ −u2ni

[
1

2
v2
F0

(3) − ivF0
(4) + 1

4
0(5)

]
C3 ≡ iu2nivF0

(4). (31)

The real space diffusion operator in 2D then becomes[
C0+C1

∂2

∂x2
+C2

∂2

∂y2
+C3

∂2

∂x∂y

]
(32)

wherex = (x, y) is a 2D coordinate vector. We assume that in two dimensions the direction
of electron transport is along thex-axis.

Appendix D. The anisotropic eigenvalue equation

To solve (13) we use a coordinate transformation:

x ′ = a11x + a12y (33)

y ′ = a21x + a22y (34)

Substituting (33) and (34) into (13) and adjustingaij such that:

C1a
2
11+C2a

2
12+C3a11a12 = 0 (35)

C1a
2
21+C2a

2
22+C3a21a22 = 0. (36)

yields[
C0+ (2C1a11a21+ 2C2a12a22+ C3a11a22+C3a21a12)

∂2

∂x ′∂y ′

]
Qm(x

′) = λmQm(x
′).

(37)

When 2C1a11a21+ 2C2a12a22+C3a11a22+C3a21a12 6= 0, we define the parameterc as

c ≡ 4[C0− λm]

2C1a11a21+ 2C2a12a22+C3a11a22+C3a21a12
(38)

so that (37) becomes an equation of standard Riemannian form:[
∂2

∂x ′∂y ′
+ 1

4
c

]
Qm(x

′, y ′) = 0. (39)

To solve this equation, we make a further nonlinear transform,

κ(x, y) ≡
√
c(x ′ − x0)(y ′ − y0) (40)

which transforms the Riemannian equation (39) into the zeroth-order Bessel equation:

∂2Qm(κ)

∂κ2
+ 1

κ

∂Qm(κ)

∂κ
+Qm(κ) = 0.

We thus obtain its solutionQ(x) as

Q(x′) = J0(
√
c(x ′ − x0)(y ′ − y0))
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wherex0 andy0 are two arbitrary constants which will, without loss of generality, be put to
zero. Finally, restoring the original variables from (33)–(34), we find the solution of (13)
to be:

Qm(x) = J0(
√
c(a11x + a12y)(a21x + a22y)). (41)

The constants{aij } and the complex constantc which give the eigenvalues are
determined by the relevant boundary conditions of the sample. We assume the same
environment as that discussed in [25]: the sample is in contact with an insulator on the
boundariesy = y1 and y = y2 so that no current flows normal to these boundaries. In
addition we assume that in the direction of the current flow, the boundaries are good metallic
contacts. Hence:

∂Qm(x, y)

∂y
|y=y1,y=y2 = 0 (42)

Qm(x, y)|x=0,x=L = 0. (43)

Equation (42) determines the eigenvalues for thex-direction, and (43) those for they-
direction. From (42) we obtain

J1(
√
c(a11x)(a21x)) = 0

J1(
√
c(a11x + a12W)(a21x + a22W)) = 0.

Denoting the zeros ofJ1 by y(i)1 (i = 1, 2, 3, . . .) we then obtain

ca11a21x
2 = (y(i)1 )

2

c[a11a21x
2+ (a11a22+ a12a21)Wx + a12a22W

2] = (y(j)1 )2

and derive the first equation determining the eigenvalues in thex-direction:

a11a21[(y(j)1 )2− (y(i)1 )
2− ca12a22W

2]2 = cW 2(a11a22+ a12a21)
2(y

(i)

1 )
2. (44)

Together with (35)–(36) and the unitary transformation (33)–(34), this equation uniquely
determines all the constants as well as the needed eigenvalues in thex-direction.

Similarly from (43), we have

J0(
√
c(a12y)(a22y)) = 0

J0(
√
c(a11L+ a12y)(a21L+ a22y)) = 0

and denoting the zeros ofJ0 by y(i)0 (i = 1, 2, 3, . . .) we then obtain

ca12a22y
2 = (y(i)0 )

2

c[a11a21L
2+ (a11a22+ a12a21)Ly + a12a22y

2] = (y(j)0 )2.

The second equation, which determines the eigenvalues in they-direction is thus:

a12a22[(y(j)0 )2− (y(i)0 )
2− ca11a21L

2]2 = cL2(a11a22+ a12a21)
2(y

(i)

0 )
2. (45)

If we let y(i)1 = y(j)1 andy(i)0 = y(j)0 , we obtain only the trivial eigenvalues for (13), i.e.
λm ≡ C0. We shall not consider this trivial case. However, the non-trivial eigenvalues are
used for the computation of the vertex functions, as described in the main text.
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